C++内存分配与释放均由用户代码自行控制,灵活的机制有如潘多拉之盒,即让程序员有了更广的发挥 5Dl/aHb
"T"h)L<
空间,也产生了代代相传的内存泄漏问题。对于新手来说,最常犯的错误就是new出一个对象而忘记释放,对于一般小应用程序来说,一点内存空间不算什么。但是当内存泄漏问题出现在需要24小时运行的平台类程序上的时候,将会使系统可用内存飞速减少,最后耗尽系统资源,导致系统崩溃。 g4@ lM"|S
``Un&-Ms
所以学会如何防止并检查内存泄漏,是一个合格的c++程序员必须具备的能力。但是由于内存泄漏是程序运行并满足一定条件时才会发生,直接从代码中查出泄漏原因的难度较大,而且一旦内存泄漏发生在多线程程序中,从大量的代码中要靠人工找出泄漏原因,无论对新人还是老手都是一场噩梦 L^Fy#p
; Hd7*`$
本文介绍一种在VS2003中检查内存泄漏的方法,供各位新人老手参考,在VC6中实现需要做一些变动,详情可自行参照相关资料。 1r7y]FyH$
[sb[Z:
检查策略分析 MxGW(p
T n}s*<=V
首先,假定我们需要检测一个24小时运行的平台程序的内存泄漏情况,我们无法确定具体的内存泄漏速度,但是我们可以确定该程序在一定时间内(如10分钟)泄漏的内存量是接近的,设为L(eak)。 |&[EZ+[
6 _ow%Rx~F
考虑在10分钟的运行时间内程序新申请到的内存A(lloc),这部分内存其实包含了程序运行正常申请,并会在后续运行中进行释放的普通内存块N(ormal)和泄漏的内存L,即:A = N + L @gtQQxf"
pBPl6%C.X-
在后续的运行中,由于N部分不断的申请和释放,所以这部分的总量基本上是不变的,而L部分由于只申请而不释放,占用的内存总量将会越来越大。 !3v1bGk
5 BJmA2L
将这个结果放到运行时间轴上,现在我们观察程序运行中的20分钟,我们假定内存泄漏速度为dL/10分钟,时间轴如下: e,5C8Q`Z
/OJ`c`>Q:
~WN:DXn
----------------|--------------------|-------------------|---------------------------- $a%MOKr
Tn-2 Tn-1 Tn wuqJr:q*#
}#E[vRf
=kqt
三点间隔均为10分钟,则我们有如下结论: :Lug7bUVD
X~i<g?]
Tn点总的内存分配量 An = N + dL * n,N为正常分配内存,dL*n为内存泄漏量的总和,而Tn-1点的内存总量则为 An-1 = N + dL*(n-1)。注意,我们这里不考虑释放的内存量,仅考虑增加的内存量。因此很明显单位时间内的内存泄漏量 dL = An - An-1。 Y)a^(!<H<
pO.2<
生成内存Dump文件的代码实现 8h4'(yGQQW
Yir
[!{
要完成如上的策略,我们首先需要能跟踪内存块的分配与释放情况,并且在运行时将分配情况保存到文件中,以便进行比较分析,所幸m$已经为我们提供了一整套手段,可以方便地进行内存追踪。具体实现步骤如下: gl_^V&c
TNr :pE<
包含内存追踪所需库 BV+ Bk+
eNu7~3k}
在StdAfx.h中添加如下代码,注意必须定义宏_CRTDBG_MAP_ALLOC,否则后续dump文件将缺少内存块的代码位置。 Jdp3nzM^^@
++#5
{GcO3G#FZ
#ifdef _DEBUG ?KI,cl
//for memory leak check aoa)BNs
#define _CRTDBG_MAP_ALLOC //使生成的内存dump包含内存块分配的具体代码为止 d5z`B H.
#include 1&o|TT/
#include a+PzI x2
#endif @oad,=R&
7fX<511(
63~
E#Dt4
启动内存追踪 9?3&?i2-
{$Gd2gO
上述步骤完成后,则可以在应用程序启动处添加如下代码,启动内存追踪,启动后程序将自动检测内存的分配与释放情况,并允许将结果输出。 c:u5\&~{
uL/m u<
)@'}\_a3[]
//enable leak check C=4Qlt[`
_CrtSetDbgFlag( _CRTDBG_REPORT_FLAG); P}G+4Sk
D{~fDRR
8Dm%@*B^b
将结果输出指向dump文件 K:Q<CQ2
BFJnV.0M!
由于默认情况下,内存泄漏的dump内容是输出到vs的debug输出窗口,但是对于服务类程序肯定没法开着vs的debug模式来追踪内存泄漏,所以必须将dump内容的输出转到dump文件中。在程序中添加如下部分: [R7Y}k:9U
s&!a
?8Cq{
HANDLE hLogFile;//声明日志文件句柄 k,F6Tx
hLogFile = CreateFile("./log/memleak.log", GENERIC_WRITE, FILE_SHARE_WRITE|FILE_SHARE_READ, xpx\=iAe
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);//创建日志文件 \K<QmK
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);//将warn级别的内容都输出到文件(注意dump的 a+T.^koY
报告级别即为warning) K>l~SDcZ3
_CrtSetReportFile(_CRT_WARN, hLogFile);//将日志文件设置为告警的输出文件 qXjxNrK
Nm>A'bLM
LAe6`foW/
保存内存Dump 4 vV:EF-
v2;`f+
完成了以上的设置,我们就可以在程序中添加如下代码,输出内存dump到指定的dump文件中: ,T8 ~L#M~
!GEJIefx_
e,XYVWY%
_CrtMemState s1, s2, s3;//定义3个临时内存状态 ;
p {[1
...... _W'-+,
_CrtDumpMemoryLeaks();//Dump从程序开始运行到该时刻点,已分配而未释放的内存,即前述An \A6B,|@
//以下部分非必要,仅为方便后续分析增加信息 :'&brp3ii=
_CrtMemCheckpoint( &s2 ); |WdPE@P
if ( _CrtMemDifference( &s3, &s1, &s2) ) 3J438M.ka
{ B i<Q=x'Z;
_CrtMemDumpStatistics( &s3 );//dump相邻时间点间的内存块变化 hzbw>g+
//for next compare Wh2tNyS
_CrtMemCheckpoint( &s1 ); A:9?ZI/X
} '1)$'
time_t now = time(0); Eue~Y+K*b
struct tm *nowTime = localtime(&now); Z} r*K%
_RPT4(_CRT_WARN,"%02d %02d:%02d:%02d snapshot dump.\n", 2oRg 2R}
nowTime->tm_mday, nowTime->tm_hour,nowTime->tm_min,nowTime->tm_sec);//输出该次dump时间 .JiziFJ@mj
M6-&R=78K
3%;a)c;D
以上代码最好放在一个函数中由定时器定期触发,或者手动snapshot生成相等时间段的内存dump。 ([LSsZ]sj
qXtC^n@x
dump文件内容示例如下: ;K&o-y
WPG(@zD
M*HnM(
Detected memory leaks! xZF}D/S?Ov
Dumping objects -> @Sbe^x
{20575884} normal block at 0x05C4C490, 87 bytes long. pDCeQ6?
Data: 02 00 1D 90 84 9F A6 89 00 00 00 00 00 00 00 00 KX7>^Bt&k
... @w !PaP
d:\xxxxx\xxxworker.cpp(903) : {20575705} normal block at 0x05D3EF90, 256 bytes long. hJ#xB6
Data: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 \1 &,|\E#
... l9u!aD
Object dump complete. t; {F%9j{
0 bytes in 0 Free Blocks. 'V=P*#|SR
215968 bytes in 876 Normal Blocks. z4]api(xZ
0 bytes in 0 CRT Blocks. jc f #6
0 bytes in 0 Ignore Blocks. zb<6
Ov
0 bytes in 0 Client Blocks. q,eVjtF
Largest number used: 220044 bytes. W+X6@/BO
Total allocations: 7838322 bytes. t9:0TBt-[
10 16:29:14 snapshot dump. .oUTqki
*zL}&RUKM
<=0
u2~E
上面红色部分即为用户代码中分配而未释放的内存块位置。 j578)!aJ
'>ssqBnI
解析Dump文件 M|`U"vO
&,CiM0
前面我们已经通过dump文件获取到各时刻点的内存dump,根据前面的分析策略,我们只需要将第n次dump的内存块分配情况An,与第n-1次dump内存块分配情况An-1作比较,即可定位到发生内存泄漏的位置。由于dump文件一般容量巨大,*人工进行对比几乎不可能,所以仅介绍比较的思路,各位需要自行制作小工具进行处理。 P8)=Kbd
j*jo@N|
1、提取两个相邻时间点的dump文件D1和D2,设D1是D2之前的dump Q_X.rUL0w
&_|#.
2、各自提取dump文件中用户代码分配的内存块(即有明确代码位置,而且为normal block的内存块),分别根据内存块ID(如“d:\xxxxx\xxxworker.cpp(903) : {20575705}”红色部分)保存在列表L1和L2 )vb*Ef
zZ323pq
3、遍历列表L2,记录内存块ID没有在L1中出现过的内存块,这些内存块即为可能泄漏的内存 YCM]VDx4u1
g:dH~>
4、根据3的结果,按照内存的分配代码位置,统计各处代码泄漏的内存块个数,降序排列,分配次数越多的代码,内存泄漏可能性越大。