1.什么是超频?
u={A4A# >\f'Q Q 超频是使得各种各样的电脑部件运行在高于额定速度下的方法。例如,如果你购买了一颗Pentium 4 3.2GHz处理器,并且想要它运行得更快,那就可以超频处理器以让它运行在3.6GHz下。
&+0WZ#VI CMu/n]?c 郑重声明!
]#$l"ss, KZeaM 警告:超频可能会使部件报废。超频有风险,如果超频的话整台电脑的寿命可能会缩短。如果你尝试超频的话,我将不对因为使用这篇指南而造成的任何损坏负责。这篇指南只是为那些大体上接受这篇超频指南/FAQ以及超频的可能后果的人准备的。有少部分人对系统检测的工具不了解,在此稍微说明下:1.Cpu-Z,可以侦测CPU的信息,包括主板、内存等信息的检测CPU-Z同样可以胜任; 2.EVEREST(原名AIDA32),测试软硬件系统信息的工具,它可以详细的显示出PC每一个方面的信息,包括CPU等的温度、电压; 3..............................
tUOqF K=Q<G:+&V 为什么想要超频?是的,最明显的动机就是能够从处理器中获得比付出更多的回报。你可以购买一颗相对便宜的处理器,并把它超频到运行在贵得多的处理器的速度下。如果愿意投入时间和努力的话,超频能够省下大量的金钱;如果你是一个象我一样的狂热玩家的话, 超频能够带给你比可能从商店买到的更快的处理器。
-/^a2_d[ i&K-|[3{g 2.超频的危险
1u `{yl*+? {"rYlN7, 首先我要说,如果你很小心并且知道要做什么的话,那对你来说,通过超频要对计算机造成任何永久性损伤都是非常困难的。不严格地说,我们可以认为风险近似于零。事实上,增加微处理器的频率不应该造成任何损害,但仅仅把它推向极限是很难烧毁系统的。在最坏的情况下,处理器将在选择的频率下不工作,而改回它的原始频率,它就又运转了,就像什么都没有发生过一样。
b*5Yy/U hYvWD.c} 然而仍有危险。第一个也是最常见的危险就是发热。在让电脑部件高于额定参数运行的时候,它将产生更多的热量。如果没有充分散热的话,系统就有可能过热。不过一般的过热是不能摧毁电脑的。由于过热而使电脑报废的唯一情形就是再三尝试让电脑运行在高于推荐的温度下。就我说,应该设法抑制在60 C以下。
~F)[H'$A Y8i'=Po%, 不过无需过度担心过热问题。在系统崩溃前会有征兆。随机重启是最常见的征兆了。过热也很容易通过热传感器的使用来预防,它能够显示系统运行的温度。如果你看到温度太高的话,要么在更低的速度下运行系统,要么采用更好的散热。稍后我将在这篇指南中讨论散热。
_8QHx;} tJ3Hg8; 超频的另一个“危险”是它可能减少部件的寿命。在对部件施加更高的电压时,它的寿命会减少。小小的提升不会造成太大的影响, 但如果打算进行大幅超频的话,就应该注意寿命的缩短了。然而这通常不是问题,因为任何超频的人都不太可能会使用同一个部件达四、 五年之久,并且也不可能说任何部件只要加压就不能撑上4-5年。大多数处理器都是设计为最高使用10年的,所以在超频者的脑海中 ,损失一些年头来换取性能的增加通常是值得的。
yj<j>JtN $3yzB9\a" 3.A.基础知识
YRU1^=v fx74h{3u 为了了解怎样超频系统,首先必须懂得系统是怎样工作的。用来超频最常见的部件就是处理器了。
]h3{MTr/ 2)-V\:;js 在购买处理器或CPU的时候,会看到它的运行速度。例如,Pentium 4 3.2GHz CPU运行在3200MHz下,这是对一秒钟内处理器经历了多少个时钟周期的度量。一个时钟周期就是一段时间,在这段时间内处理器能够执行给定数量的指令。所以在逻辑上,处理器在一秒内能完成的时钟周期越多,它就能够越快地处理信息,而且系统就会运行得越 快。1MHz是每秒一百万个时钟周期,所以3.2GHz的处理器在每秒内能够经历3,200,000,000或是3十亿200百 万个时钟周期。相当了不起,对吗?
$u"*n\k> bM@8[&ta 超频的目的是提高处理器的GHz等级,以便它每秒钟能够经历更多的时钟周期。计算处理器速度的公式是这个:
a ]b%v9 1r:i'cWh 外频(以MHz为单位)×倍频 = 速度(以MHz为单位)。
\I-bZ|^ ta 现在来解释外频、FSB和倍频是什么:
U"T>L [}*xxy 外频是CPU乃至整个计算机系统的基准频率,单位是MHz(兆赫兹)。
a_V.mu6h6p fkHCfcU FSB(对AMD处理器来说是HTT*,AMD把内存控制器集成在芯片里了),或前端总线,就是整个系统与CPU通信的通道。所以,FSB能运行得越快,显然整个系统就能运行得越快。在AMD Athlon 64 CPU上,术语FSB实在是用词不当,本质上并没有FSB,FSB被整合进了芯片。这使得FSB与CPU的通信比Intel的标准FSB方法快得多。它还可能引起一些混乱,因为Athlon 64上的FSB有时可能被说成HTT。如果看到某些人在谈论提高Athlon 64 CPU上的HTT,并且正在讨论认可为普通FSB速度的速度,那么就把HTT当作FSB来考虑。在很大程度上,它们以相同的方式运行并且能够被视为同样的事物,而把HTT当作FSB来考虑能够消除一些可能发生的混淆。
}57d3s jhx @6[ 注意:外频与前端总线(FSB)频率很容易被混为一谈。前端系统总线(Front Side Bus,简称FSB)是CPU和主板的北桥芯片或者MCH(内存控制集线器)之间的数据通道。它的速度(频率)高低影响着CPU访问内存的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,是CPU与主板之间同步运行的速度,它更多的影响了PCI及其他总线的频率。如果还不明白,就看这个例子吧:200MHz外频特指数字脉冲信号在每秒钟震荡二千万次;而200MHz前端总线指的是每秒钟CPU可接受的数据传输量是200MHz×64bit÷8Byte/s=1600MB/s。
"e ;wN3/bF 之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。
Au"7w=G`f 注意:所以,一些文章讲超频、分频之类提到超FSB时实际上是指超“外频”,也即FSB潜在的真实速度,是指没有乘那个2或4系数的值(比如FSB为800MHz,也即200MHz×400=800MHz,超频所改变的值是指改变200这个指,例如把200超到250,当然FSB也从800变成250×4=1000了)。因此,在超频中提到FSB时大家应该辨别-----是等于外频的值,还是乘以系数后的值。
}f;cA h\<;N*Xi CPU厂商已经找到了增加CPU的FSB有效速度的方法。他们只是在每个时钟周期中发送了更多的指令。所以CPU厂商已经有 每个时钟周期发送两条指令的办法(AMD CPU),或甚至是每个时钟周期四条指令(Intel CPU),而不是每个时钟周期发送一条指令。那么在考虑CPU和看FSB速度的时候,必须认识到它不是真正地在那个速度下运行。 Intel CPU是“四芯的”,也就是它们每个时钟周期发送4条指令。这意味着如果看到800MHz的FSB,潜在的FSB速度其实只有200MHz,但它每个时钟周期发送4条指令,所以达到了800MHz的有效速度。相同的逻辑也适用于AMD CPU,不过它们只是“二芯的”,意味着它们每个时钟周期只发送2条指令。所以在AMD CPU上400MHz的FSB是由潜在的200MHz FSB每个时钟周期发送2条指令组成的。
35}]U= B[IqLD'6 这是重要的,因为在超频的时候将要处理CPU真正的FSB速度(即外频值),而不是有效CPU速度。
a +lTAe .E/NlGm[ 速度等式的倍频部分也就是一个数字,乘上外频速度就给出了处理器的总速度。例如,如果有一颗具有200MHz外频(也即在乘二或乘四之前的真正FSB速度)和10倍频的CPU,那么等式变成:
8GKqPS+
p E56CM (外频)200MHz×(倍频)10 = 2000MHz CPU速度,或是2.0GHz。
BpR#3CfW @ak3ZNor 在某些CPU上,例如Intel自1998年以来的处理器,倍频是锁定不能改变的。在有些上,例如AMD Athlon 64处理器,倍频是“封顶锁定”的,也就是可以改变倍频到更低的数字,但不能提高到比最初的更高。在其它的CPU上,倍频是完全放开的,意味着能够把它改成任何想要的数字。这种类型的CPU是超频极品,因为可以简单地通过提高倍频来超频CPU。
A5q%ytI -<Oy5N 在CPU上提高或降低倍频比超外频容易得多了。这是因为倍频和外频不同,它只影响CPU速度。改变外频时,实际上是在改变每个单独的电脑部件与CPU通信的速度。这是在超频系统的所有其它部件了。这在其它不打算超频的部件被超得太高而无法工作时, 可能带来各种各样的问题。不过一旦了解了超频是怎样发生的,就会懂得如何去防止这些问题了。
Cn"L*\o x6iT"\MO ;p8,=w j"Y5j
B` 在此,顺便提及下显卡的显存和内存的标准工作电压:
L=v"5)m2R 1. DDR显存:2.5V。 // DDR2显存:1.8V // DDR3显存:1.8V,耗电量较DDR2明显降低。
r>kDRIHB 显卡超频较简单,常用的测试超频工具主要有--PowerStrip ,ClockGen (
www.cpuid.com主页),N卡用的NVCool , ATi显卡用的ATiTool
\0bZ1" >sZ207* 2. SDRAM内存一般工作电压都在3.3伏左右,上下浮动额度不超过0.3伏;DDR266/DDR333/DDR400/DDR533的标准电压是2.5~2.66V(DDR266、DDR333可以将内存电压设定为2.5V,DDR400内存电压设定为2.63V或2.65V,);而DDR2 SDRAM内存的工作电压一般在1.8V左右。具体到每种品牌、每种型号的内存,则要看厂家了,但都会遵循标准电压,在允许的范围内浮动。
@7z_f!'u !fT3mI6u\ Ks/Uyu. X 3.B.基础知识(续)-----深入主频、外频、超频
r$/.x6g//
gU%R9 时钟和频率
<pp<%~_Z y^tp^ 在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。我们将第一个脉冲和第二个脉冲之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
MU#$tXmnC 'i7!"Y6> 频率是描述周期性循环信号包括脉冲信号在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。
$8t\|O3 k_A
9gj1 频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1 G=1000MHz,1MHz=1000kHz,1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs (微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。
ATq-&1hs d_!lRQ^N 电脑中的时钟和我们日常所用的“时钟”可不一样,它没有现在是“几点几分”的指示,而仅仅是一个按特定频率连续发出脉冲的信号发生器。至于电脑主板COMS中保留日期和时间的功能则另当别论。
]>"q>XgnI FZJyqqA$_ 电脑系统中为什么要有时钟?举个例子说吧,我们在做广播操时总要放广播操的录音(或要一人喊口令),这样几十个做操的人中虽然有男有女,有老有少但只要都按统一的节拍做,就可以将广播操做得比较整齐。
ndxijqw 6~y7A<[^ 同样,电脑中是一个复杂数据处理系统,其中CPU处理数据是按照一定的指令进行的,每次执行指令时,CPU内部的运算器、寄存器和控制器等都必须相互配合进行,虽然每次执行的指令长短不一,参与运算的CPU内部单元也不止一个,但由于都能按照统一的时钟脉冲同步地进行,所以整个系统才能协调一致地正常运行。
M
hJ;)( KGq4tlM6 况且电脑中除CPU外,还有存储系统和显示系统等,由于这些分系统运行时也需用特定频率的时钟信号用于规范运行,所以在电脑系统中除了CPU主频和系统时钟外,还有用于ISA和PCI总线和AGP显示接口的时钟,当然这些时钟的频率都低于系统时钟。
N^U<;O?YDW h8-'I=~ 主频和外频
lk. ; c:f++|| 在电脑中,系统总线通常是指CPU的I/O接口单元与系统内存、L2 Cache和主板芯片组之间的数据、指令等传输通道。系统总线时钟就是我们常说的系统时钟和CPU外部时钟(外频),它是电脑系统的基本时钟,电脑中各分系统中所有不同频率的时钟都与系统时钟相关联。
EC0M0qQ _>)=c<HL 由于从486DX2(CPU)开始,CPU的内核工作频率和外频(系统时钟频率)就不一致了。
^{(i;IVG ;DN:AgXP 在586、686电脑中,系统时钟就是CPU的“外频”,而将系统时钟按规定比例倍频后所得到时钟信号作为CPU的内核工作时钟。CPU内核工作时钟频率也就是我们平常所说的电脑主频,例如说某电脑是Pentium-233,那么这台电脑的系统时钟是66MHz,而它的主频则是(66×3.5)= 233MHz。
.0H!B#9 a"|\n_ 各分系统时钟和AGP接口时钟都是由系统时钟按照一定的比例分频或倍频得到的,所以调整电脑中的系统时钟频率必然将改变其它各分系统时钟信号频率,影响各分系统的实际运行情况,这一点对电脑发烧友进行CPU超外频运行时应该加以充分重视。
O,A}p:Pgs VjhwafYC 主频、外频和运算速度
Q{))+'s2h "RG #e+ #{L
!o5 在电脑数据通信中计算数据传输速率常使用公式:时钟频率×数据总线宽度÷8=Betys/s。
.jps6{ 4}t&AW4 9X[}ik0 在电脑系统中,CPU与系统内存、显示接口(如AGP“总线”)以及通过主板芯片组与扩展总线(ISA、PCI)之间进行数据交换时,是按相应的时钟频率进行的。例如当系统时钟为66MHz时,系统内存与CPU之间的数据传输率是528MB/s。
9'S~zG%{ R404\XGL AGP高速显示接口工作在X1方式的时钟频率也是66MHz,但由于数据宽度只有32位,所以AGP接口的数据传输速率只能达到266MB/s 。
DHO+JtO KJLK]lf}d PCI总线的数据宽度虽然也是32位,但由于PCI总线时钟频率只有33MHz,所以PCI总线的数据传输最高速率只有133MB/s。
TR([u zMI0W&P M 在Intel公司推出440BX主板芯片将系统时钟频率由原来的66MHz提高到100MHz后,CPU与系统内存之间的数据交换速率就达到了 800MB/s(100×64÷8)。从这点可以看出,在同样的数据宽度条件下,只要提高工作时钟频率就能提高传输通道的数据传输速率。
B>TI dQ \mt>R[ 另外,提高CPU的主频对提高CPU运算速度也是非常有效的措施。举例说吧,假设某型CPU能在1个时钟周期执行一条运算指令,那么当CPU运行在100MHz主频时将比它运行在50MHz主频时速度快一倍。
{x8UL7{ <0hJo=6a8 因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。
3ZKaqwK Y><")% Q 只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,所以在人们不断设法提高CPU工作主频的同时,还在努力试图提高电脑的系统时钟频率。
[va7+=[1= >RMp`HxDf 这些努力的最终目的是想提高电脑的总体运行速度,因为只有当电脑中的CPU运算速度、各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高
}:5>1FfX= 8;r7ksE~ D;l)&"|r? 制约主频、外频提高的因素
x#
&ZGFr~ M+N7JpR :i24@V~){ 既然提高CPU主频和系统时钟频率可以提高电脑系统的运算速度,那么为什么至今为止CPU的主频和电脑系统时钟频率还不能提得更高呢?这都是因为提高CPU时钟频率和系统时钟频率受到了一些暂时还无法克服的技术障碍所造成的。
,B<Tt|' ?-e'gC 提高CPU工作主频主要受到生产工艺的限制。由于CPU是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。
/rqaUC )A G3G"SJ np 如果更低的工艺技术过关,那么生产出主频更高的CPU是毫无问题的,如果再能解决IBM提出的铜基导体技术难题,那么更有可能制造出工作主频更高的CPU。
4gNF; oQvG3(. 另一方面,提高系统时钟频率的尝试也受到了运行速度较慢的外部器件制约。几十年来,虽然外部设备,主要是数据存储设备技术也在逐步发展,但其发展的速度同CPU的发展进度相比是不可同日而语的。
UkY
`&&ic