"陷阱"技术探秘──动态汉化Windows技术的分析 M/LC:,
1(`UzC=R|
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 huTWoMU
n ]<>$
一、发现了什么? Xf/qUao
笔者多年来一直从事Windows下的软件开发工作,经历了Windows 2.0 、 3.0 、3.1 ,直至Windows 95、NT的成长过程,也遍历了长青窗口、长城窗口、DBWin、CStar、RichWin等多个Windows汉化产品。从现在看来,影响最大也最为成功的,当推四通利方的RichWin;此外,中文之星CStar与RichWin师出一门,其核心技术自然也差不多。其对外宣传采用独特的"陷阱" 技术即动态修改Windows代码,一直是笔者感兴趣的地方。 5f-eWW]!
EXEHDR是Microsoft Visual C++开发工具中很有用的一个程序,它可以检查NE(New-Exe cutable)格式文件,用它来分析RichWin的WSENGINE.DLL或CStar的CHINESE.DLL,就会发现与众不同的两点(以CStar 1.20为例): tXg>R _\C
L
Rn)
C:\CSTAR>exehdr chinese.dll /v p3W-*lE
.................................. |qq7vx
Ni
Y.OwKr
6 type offset target U^~jB= =]
BASE 060a seg 2 offset 0000 3qVDHDQ?ZV
PTR 047e imp GDI.GETCHARABCWIDTHS #k/NS
PTR 059b imp GDI.ENUMFONTFAMILIES 6)#=@i`
\
PTR 0451 imp DISPLAY.14 ( EXTTEXTOUT ) 7@u:F?c
PTR 0415 imp KEYBOARD.4 ( TOASCII ) 6b7SA,
PTR 04ba imp KEYBOARD.5 ( ANSITOOEM ) d#Xt2
PTR 04c9 imp KEYBOARD.6 ( OEMTOANSI ) SLi?E
PTR 04d8 imp KEYBOARD.134( ANSITOOEMBUFF ) %kXg|9Bx!
PTR 05f5 imp USER.430 ( LSTRCMP ) c-".VF
PTR 04e7 imp KEYBOARD.135( OEMTOANSIBUFF ) V")u
y&Ob
PTR 0514 imp USER.431 ( ANSIUPPER ) 'p> *4}
PTR 0523 imp USER.432 ( ANSILOWER ) 5LVzT1j|
PTR 05aa imp GDI.56 ( CREATEFONT ) UgC{
PTR 056e imp USER.433 ( ISCHARALPHA ) gBPYGci2F
PTR 05b9 imp GDI.57 ( CREATEFONTINDIRECT ) Sf"]enwB
PTR 057d imp USER.434 ( ISCHARALPHANUMERIC ) w\`u|f;Aq
PTR 049c imp USER.179 ( GETSYSTEMMETRICS ) <
/\y<]b
PTR 0550 imp USER.435 ( ISCHARUPPER ) ;Svs|]d
PTR 055f imp USER.436 ( ISCHARLOWER ) Re]7G.y
PTR 0532 imp USER.437 ( ANSIUPPERBUFF ) h$U(1B
PTR 0541 imp USER.438 ( ANSILOWERBUFF ) ;%V)lP "o
PTR 05c8 imp GDI.69 ( DELETEOBJECT ) E%np-is{1
PTR 058c imp GDI.70 ( ENUMFONTS ) s F!nSr
PTR 04ab imp KERNEL.ISDBCSLEADBYTE 7]pi .1i
PTR 05d7 imp GDI.82 ( GETOBJECT ) >oasA2S
PTR 048d imp KERNEL.74 ( OPENFILE ) t{g7 :A
PTR 0460 imp GDI.91 ( GETTEXTEXTENT ) >21f%Z
PTR 05e6 imp GDI.92 ( GETTEXTFACE ) n~C!PXE
PTR 046f imp GDI.350 ( GETCHARWIDTH ) "qxu9Hg!
PTR 0442 imp GDI.351 ( EXTTEXTOUT ) ;RW024
PTR 0604 imp USER.471 ( LSTRCMPI ) N~0~1
WQn
PTR 04f6 imp USER.472 ( ANSINEXT ) KL^hYjC
PTR 0505 imp USER.473 ( ANSIPREV ) '\4 @
PTR 0424 imp USER.108 ( GETMESSAGE ) 0sGAC
PTR 0433 imp USER.109 ( PEEKMESSAGE ) G Z~W#*|V
{OGv1\ol&
35 relocations k]] e8>
j" ~gEGfK
(括号内为笔者加上的对应Windows API函数。) Izr_]%
第一,在数据段中,发现了重定位信息。 wzNGL{3
第二,这些重定位信息提示的函数,全都与文字显示输出和键盘、字符串有关。也就是说汉化Windows,必须修改这些函数。 ,5J}Wo?Q}
在这非常特殊的地方,隐藏着什么呢?毋庸置疑,这与众不同的两点,对打开"陷阱"技术之门而言,不是金钥匙,也是敲门砖。 ]J)3y+;P
P8\bi"iiN
二、Windows的模块调用机制与重定位概念 @/ G$
C9<
为了深入探究"陷阱"技术,我们先来介绍Windows的模块调用机制。 )4CF*>*6V
Windows的运行分实模式、标准模式和增强模式三种,虽然这几种模式各不相同,但其核心模块的调用关系却是完全一致的。
TD6MP9L
主要的三个模块,有如下的关系: si,W.9rU
·KERNEL是Windows系统内核,它不依赖其它模块。 SO8b~N
·GDI是Windows图形设备接口模块,它依赖于KERNEL模块。 m{{8#@g
·USER是Windows用户接口服务模块,它依赖于KERNEL、GDI模块及设备驱动程序等所有模块。 F?*ko,
这三个模块,实际上就是Windows的三个动态链接库。KERNEL有三种系统存在形式:Kern el.exe(实模式)、Krnl286.exe(标准模式)、Krnl386.exe(386增强模式);GDI模块是Gdi.ex e;USER模块是User.exe。虽然文件名都以EXE为扩展名,但它们实际都是动态链接库。同时,几乎所有的API函数都隐藏在这三个模块中。用EXEHDR对这三个模块分析,就可列出一大堆大家所熟悉的Windows API函数。 0fP-[7P
以GDI模块为例,运行结果如下: 60Szn]z'8[
C:\WINDOWS\SYSTEM>exehdr gdi.exe Bq*aP*jv
5FQtlB9F
Exports: [_w;=l0 ;
S*9qpes-m|
rd seg offset name qdY*y&}"J
............ Udl8?EVSz
351 1 923e EXTTEXTOUT exported, shared data %wk3&EC.
56 3 19e1 CREATEFONT exported, shared data MFqM6_
............ /KLs+^c5
9n!IdqKN
至此,读者已能从Windows纷繁复杂的系统中理出一些头续来。下面,再引入一个重要概念——重定位。 C[IY9s:Pf
一个Windows执行程序对调用API函数或对其它动态库的调用,在程序装入内存前,都是一些不能定位的动态链接;当程序调入内存时,这些远调用都需要重新定位,重新定位的依据就是重定位表。在Windows执行程序(包括动态库)的每个段后面,通常都跟有这样一个重定位表。重定位包含调用函数所在模块、函数序列号以及定位在模块中的位置。 SQ0t28N3h
例如,用EXEHDR /v 分析CHINESE.DLL得到: #dEMjD
6 type offset target &* 1iW(x
GAY
f.L"
.......... } Rs@
]O1}q!s
PTR 0442 imp GDI.351 R(dOQ. ;
9aKt (g6
.......... y>jP]LR4
4 /Q4sE~<
就表明,在本段的0442H偏移处,调用了GDI的第351号函数。如果在0442H处是0000:FFFF ,表示本段内仅此一处调用了GDI.351函数;否则,表明了本段内还有一处调用此函数,调用的位置就是0442H处所指向的内容,实际上重定位表只含有引用位置的链表的链头。那么,GDI. 351是一个什么函数呢?用EXEHDR对GDI.EXE作一分析,就可得出,在GDI的出口(Export)函数中,第351号是ExtTextOut。 e=#'rDm
这样,我们在EXEHDR这一简单而非常有用的工具帮助下,已经在Windows的浩瀚海洋中畅游了一会,下面让我们继续深入下去。 N "Mw1R4
qG?svt
三、动态汉化Windows原理 NpN-''B\
我们知道,传统的汉化Windows的方法,是要直接修改Windows的显示、输入、打印等模块代码,或用DDK直接开发"中文设备"驱动模块。这样不仅工作量大,而且,系统的完备性很难保证,性能上也有很多限制(早期的长青窗口就是如此),所以只有从内核上修改Windows核心代码才是最彻底的办法。 u>-pgu
从Windows的模块调用机制,我们可以看到,Windows实际上是由包括在KERNEL、GDI、US ER等几个模块中的众多函数支撑的。那么,修改其中涉及语言文字处理的函数,使之能适应中文需要,不就能达到汉化目的了吗? 7,:$, bL
因而,我们可以得出这样的结论:在自己的模块中重新编写涉及文字显示、输入的多个函数,然后,将Windows中对这些函数的引用,改向到自己的这些模块中来。修改哪些函数才能完成汉化,这需要深入分析Windows的内部结构,但CHINESE.DLL已明确无误地告诉了我们,在其数据段的重定位表中列出的引用函数,正是CStar修改了的Windows函数!为了验证这一思路, 我们利用RichWin作一核实。 NR|t~C+
用EXEHDR分析GDI.EXE,得出ExtTextOut函数在GDI的第一代码段6139H偏移处(不同版本的Windows其所在代码段和偏移可能不一样)。然后,用HelpWalk(也是Microsoft Visual C+ +开发工具中的一个)检查GDI的Code1段,6139H处前5个字节是 B8 FF 05 45 55,经过运行Ri chWin 4.3 for Internet后,再查看同样的地方,已改为 EA 08 08 8F 3D。其实反汇编就知道,这5个字节就是 Jmp 3D8F:0808,而句柄为0x3D8F的模块,用HelpWalk能观察正是RichWin 的WSENGINE.DLL的第一代码段( 模块名为TEXTMAN)。而偏移0808H处 B8 B7 3D 45 55 8B E C 1E,正是一个函数起始的地方,这实际上就是RichWin所重改写的ExtTextOut函数。退出Ri chWin后,再用HelpWalk观察GDI的Code1代码段,一切又恢复正常!这与前面的分析结论完全吻合!那么,下一个关键点就是如何动态修改Windows的函数代码,也就是汉化Windows的核心——"陷阱"技术。 O=2SDuBZ
l
%M0^d6M
四、"陷阱"技术 h.WvPZ2U
讨论"陷阱"技术,还要回到前面的两个发现。发现之二,已能解释为修改的Windows函数,而发现之一却仍是一个迷。 Ka|,
qkb
数据段存放的是变量及常量等内容,如果这里面包含有重定位信息,那么,必定要在变量说明中将函数指针赋给一个FARPROC类型的变量,于是,在变量说明中写下: _zF*S]9
X
FARPROC FarProcFunc=ExtTextOut; Pt^SlX^MM
果然,在自己程序的数据段中也有了重定位信息。这样,当程序调入内存时,变量FarPro cFunc已是函数ExtTextOut的地址了。 zEN3Nn.8
要直接修改代码段的内容,还遇到一个难题,就是代码段是不可改写的。这时,需要用到一个未公开的Windows函数AllocCStoDSAlias,取得与代码段有相同基址的可写数据段别名, 其函数声明为: w(-h!d51+
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); 7v{s?h->$
参数是代码段的句柄,返回值是可写数据段别名句柄。 \;F_QV
Windows中函数地址是32位,高字节是其模块的内存句柄,低字节是函数在模块内的偏移。将得到的可写数据段别名句柄锁定,再将函数偏移处的5个字节保留下来,然后将其改为转向替代函数(用 EA Jmp): }V I}O{
*(lpStr+wOffset) =0xEA; j|X>:!4r
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 Exu>%
//源程序 relocate.c uFl19
DSX.84
#include <WINDOWS.H> 6l,oL'$}P1
#include <dos.h> %UnL,V9)
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECTFAR*lpRect,LPCSTR lpStr, UINT nInt2, int FAR* lpInt); N_^s;Qj
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); n)xLEx,
typedef struct tagFUNC p81Vt
{ eGr;P aG
FARPROC lpFarProcReplace; //替代函数地址 x-%4-)
FARPROC lpFarProcWindows; //Windows函数地址 ~f5g\n;
BYTE bOld; //保存原函数第一字节 'vc>uY
LONG lOld; //保存原函数接后的四字节长值 io^L[
}FUNC; 75?z" i
FUNC Func={MyExtTextOut,ExtTextOut}; H\!p%Y
//Windows主函数 m. EIMuj
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) P<s0f:".
{ zvAUF8'_
HANDLE hMemCode; //代码段句柄 SG@-b(
WORD hMemData; //相同基址的可写数据段别名 5zk^zn)
WORD wOffset; //函数偏移 H4{CiZ
LPSTR lpStr; -H-:b7
LPLONG lpLong; "s3eO
char lpNotice[96]; *uG!U%jY)
hMemCode=HIWORD((LONG) Func.lpFarProcWindows ); b`yb{&
,?
wOffset=LOWORD((LONG) Func.lpFarProcWindows ); T2/lvvG
wsprintf(lpNotice,"函数所在模块句柄 0x%4xH,偏移 0x%4xH",hMemCode,wOffset); &U7INUL
MessageBox(NULL,lpNotice,"提示",MB_OK); PbpnjvVrM
//取与代码段有相同基址的可写数据段别名 v62O+{
hMemData=AllocCStoDSAlias(hMemCode); H68~5lJY^]
lpStr=GlobalLock(hMemData); S#{gCc
lpLong=(lpStr+wOffset+1 ); |b^+=
"
//保存原函数要替换的头几个字节 T\3aT
Func.bOld=*(lpStr+wOffset); bjCO@t
Func.lOld=*lpLong; yNU.<d 5
*(lpStr+wOffset)=0xEA; _G0_<WH6
*lpLong=Func.lpFarProcReplace; wR]jJbF
GlobalUnlock(hMemData); !]*Cwbh.
u
MessageBox(NULL,"改为自己的函数","提示",MB_OK); ?=#vp /
//将保留的内容改回来 JDp{d c
hMemData=AllocCStoDSAlias(hMemCode); yMVlTO
lpStr=GlobalLock(hMemData); #|R#/Yc@Bv
lpLong=(lpStr+wOffset+1 ); 3 jR I@
*(lpStr+wOffset)=Func.bOld; K0xka[x=(
*lpLong=Func.lOld; <g3)!VR^q
GlobalUnlock(hMemData); C(@#I7 G
MessageBox(NULL,"改回原Windows函数","提示",MB_OK); r=74'g
return 1; H.=S08c3kA
} g*]/HS>e<G
x4=Sm0Ro|V
//自己的替代函数 hw9qnSeRy
'h.:-1# L
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECT FAR* su\iUi
lpRect, LPCSTR lpStr, UINT nInt2, int FAR* lpInt) ;%W]b
{ YkuFt>U9,
BYTE NameDot[96]= 8;\
{ 6>=yX6U1q^
0x09, 0x00, 0xfd, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, qr<RMs
0x79, 0x40, 0x41, 0x04, 0x47, 0xfe, 0x41, 0x40, 0x79, 0x40, ]/ffA|"U`
0x09, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x4e, 0x51, 0x84, XV %DhR=
0x21, 0x00, 0x02, 0x00, 0x01, 0x04, 0xff, 0xfe, 0x00, 0x00, |9'`;4W
0x1f, 0xf0, 0x10, 0x10, 0x10, 0x10, 0x1f, 0xf0, 0x00, 0x00, kfj)`x
0x7f, 0xfc, 0x40, 0x04, 0x4f, 0xe4, 0x48, 0x24, 0x48, 0x24, T0TgV
0x4f, 0xe4, 0x40, 0x0c, 0x10, 0x80, 0x10, 0xfc, 0x10, 0x88, Q/zlU@
0x11, 0x50, 0x56, 0x20, 0x54, 0xd8, 0x57, 0x06, 0x54, 0x20, ;U)xZ _Ew~
0x55, 0xfc, 0x54, 0x20, 0x55, 0xfc, 0x5c, 0x20, 0x67, 0xfe, :f_fp(T
0x00, 0x20, 0x00, 0x20, 0x00, 0x20 xmXuBp:M(R
}; w_ONy9
bo|3sN+D
HBITMAP hBitmap,hOldBitmap; w]O[{3"
HDC hMemDC; 1Xn:B_pP
BYTE far *lpDot; UI%Z`.&
int i; $s]vZ(H
for ( i=0;i<3;i++ ) ZULnS*V;5
{ iO@UzD#v
lpDot=(LPSTR)NameDot+i*32; RzOcz=A}
hMemDC=CreateCompatibleDC(hDC); zN3b`K. i
hBitmap=CreateBitmap(16,16,1,1,lpDot); L'L[Vpx
SetBitmapBits(hBitmap,32L,lpDot); euiP<[|h=
hOldBitmap=SelectObject(hMemDC,hBitmap); !fmbm4!a
BitBlt(hDC,x+i*16,y,16,16,hMemDC,0,0,SRCCOPY); j/p1/sJ[y
DeleteDC(hMemDC); PX/7 :D?
DeleteObject(hBitmap); xNOArb5e5
} a${<~M
hm
return TRUE; ^gSZzJ5
} +=M N_
N> jQe
//模块定义文件 relocate.def C116c"
Q5xQ5Le
NAME RELOCATE Ek6z[G`
O
EXETYPE WINDOWS %5$)w;p.$'
CODE PRELOAD MOVEABLE DISCARDABLE 9y+0Zj+.
DATA PRELOAD MOVEABLE MULTIPLE 9_-6Lwj6t
HEAPSIZE 1024 8yDe{
EXPORTS Rl{e<>O\^
B&L-Lc2
五、结束语 cw"Ou%
本文从原理上分析了称为"陷阱"技术的动态汉化Windows方法,介绍了将任一Windows函数调用改向到自己指定函数处的通用方法,这种方法可以拓展到其它应用中,如多语种显示、不同内码制式的切换显示等。