"陷阱"技术探秘──动态汉化Windows技术的分析 CuF%[9[cT
z^YeMe
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 !7ph,/P$7
C8!8u?k
一、发现了什么? f&+XPd %
笔者多年来一直从事Windows下的软件开发工作,经历了Windows 2.0 、 3.0 、3.1 ,直至Windows 95、NT的成长过程,也遍历了长青窗口、长城窗口、DBWin、CStar、RichWin等多个Windows汉化产品。从现在看来,影响最大也最为成功的,当推四通利方的RichWin;此外,中文之星CStar与RichWin师出一门,其核心技术自然也差不多。其对外宣传采用独特的"陷阱" 技术即动态修改Windows代码,一直是笔者感兴趣的地方。 BJ_+z gf`
EXEHDR是Microsoft Visual C++开发工具中很有用的一个程序,它可以检查NE(New-Exe cutable)格式文件,用它来分析RichWin的WSENGINE.DLL或CStar的CHINESE.DLL,就会发现与众不同的两点(以CStar 1.20为例): 7=; D0SS
EaJDz`T}
C:\CSTAR>exehdr chinese.dll /v (ej:_w1
.................................. M
,Zm|3L
cA2^5'$$
6 type offset target s0_-1VU
BASE 060a seg 2 offset 0000 wE-Ji<1HJ
PTR 047e imp GDI.GETCHARABCWIDTHS O-y6!u$6&
PTR 059b imp GDI.ENUMFONTFAMILIES ?r^
hmu"a
PTR 0451 imp DISPLAY.14 ( EXTTEXTOUT ) hg$qbeUl
PTR 0415 imp KEYBOARD.4 ( TOASCII ) u4`mQ6
PTR 04ba imp KEYBOARD.5 ( ANSITOOEM ) +R3\cRM
PTR 04c9 imp KEYBOARD.6 ( OEMTOANSI ) (rau8
PTR 04d8 imp KEYBOARD.134( ANSITOOEMBUFF ) <W=~UUsn
PTR 05f5 imp USER.430 ( LSTRCMP ) K'a#M g
PTR 04e7 imp KEYBOARD.135( OEMTOANSIBUFF ) 49iR8w?k
PTR 0514 imp USER.431 ( ANSIUPPER ) *1 n;p)K
PTR 0523 imp USER.432 ( ANSILOWER ) VyB\]EBu
PTR 05aa imp GDI.56 ( CREATEFONT ) |)
x'
PTR 056e imp USER.433 ( ISCHARALPHA ) 4Z<]4:o
PTR 05b9 imp GDI.57 ( CREATEFONTINDIRECT ) Kx(76_XD
PTR 057d imp USER.434 ( ISCHARALPHANUMERIC ) tn(?nQN3
PTR 049c imp USER.179 ( GETSYSTEMMETRICS ) %AzPAWcN
PTR 0550 imp USER.435 ( ISCHARUPPER ) PU,6h}
PTR 055f imp USER.436 ( ISCHARLOWER ) V[BY/<z)A
PTR 0532 imp USER.437 ( ANSIUPPERBUFF ) n1fEdaa7g
PTR 0541 imp USER.438 ( ANSILOWERBUFF ) {QIS411
PTR 05c8 imp GDI.69 ( DELETEOBJECT ) !N@S^JD6
PTR 058c imp GDI.70 ( ENUMFONTS ) z }FiU[Hs
PTR 04ab imp KERNEL.ISDBCSLEADBYTE R4z<Xf:!
PTR 05d7 imp GDI.82 ( GETOBJECT ) 94Kuy@0:+
PTR 048d imp KERNEL.74 ( OPENFILE )
'7S!6kd?
PTR 0460 imp GDI.91 ( GETTEXTEXTENT ) Wq=ZU\Y
PTR 05e6 imp GDI.92 ( GETTEXTFACE ) ;:#?~%7>
PTR 046f imp GDI.350 ( GETCHARWIDTH ) oi33{#%t
PTR 0442 imp GDI.351 ( EXTTEXTOUT ) ^&f{beU9
PTR 0604 imp USER.471 ( LSTRCMPI ) *qeic e%E
PTR 04f6 imp USER.472 ( ANSINEXT ) Zj%B7s1A
PTR 0505 imp USER.473 ( ANSIPREV ) l044c,AW(
PTR 0424 imp USER.108 ( GETMESSAGE ) BLl%D
PTR 0433 imp USER.109 ( PEEKMESSAGE ) _QC?:mv6-
7/5NaUmPTt
35 relocations {ar5c&<
'xLM>6[wz
(括号内为笔者加上的对应Windows API函数。) y^EF<<\
第一,在数据段中,发现了重定位信息。 1]D/3!
第二,这些重定位信息提示的函数,全都与文字显示输出和键盘、字符串有关。也就是说汉化Windows,必须修改这些函数。 k;"R y8[k
在这非常特殊的地方,隐藏着什么呢?毋庸置疑,这与众不同的两点,对打开"陷阱"技术之门而言,不是金钥匙,也是敲门砖。 /8P4%[\
SdjUhR+o
二、Windows的模块调用机制与重定位概念 1B9Fb.i
为了深入探究"陷阱"技术,我们先来介绍Windows的模块调用机制。 '$2oSd
Windows的运行分实模式、标准模式和增强模式三种,虽然这几种模式各不相同,但其核心模块的调用关系却是完全一致的。
z&;zU)Jvd
主要的三个模块,有如下的关系: e]dPF[?7
·KERNEL是Windows系统内核,它不依赖其它模块。 twYB=68
·GDI是Windows图形设备接口模块,它依赖于KERNEL模块。 !0!P.Q8>&
·USER是Windows用户接口服务模块,它依赖于KERNEL、GDI模块及设备驱动程序等所有模块。 +l[Z2mW
这三个模块,实际上就是Windows的三个动态链接库。KERNEL有三种系统存在形式:Kern el.exe(实模式)、Krnl286.exe(标准模式)、Krnl386.exe(386增强模式);GDI模块是Gdi.ex e;USER模块是User.exe。虽然文件名都以EXE为扩展名,但它们实际都是动态链接库。同时,几乎所有的API函数都隐藏在这三个模块中。用EXEHDR对这三个模块分析,就可列出一大堆大家所熟悉的Windows API函数。 _G-b L;
以GDI模块为例,运行结果如下: kz$6}&uk
C:\WINDOWS\SYSTEM>exehdr gdi.exe ?34EJ
!
vy2*BTU?
Exports: =,/A\F
!%Z)eO~Z
rd seg offset name P ],)
............ V8KTNt%
351 1 923e EXTTEXTOUT exported, shared data FthXFxwx$
56 3 19e1 CREATEFONT exported, shared data LP0;n\
............ 6.`} &E
!R] CmK
至此,读者已能从Windows纷繁复杂的系统中理出一些头续来。下面,再引入一个重要概念——重定位。 Kdryl
一个Windows执行程序对调用API函数或对其它动态库的调用,在程序装入内存前,都是一些不能定位的动态链接;当程序调入内存时,这些远调用都需要重新定位,重新定位的依据就是重定位表。在Windows执行程序(包括动态库)的每个段后面,通常都跟有这样一个重定位表。重定位包含调用函数所在模块、函数序列号以及定位在模块中的位置。 jFJW3az@z
例如,用EXEHDR /v 分析CHINESE.DLL得到: ?:{0
6 type offset target mCC:}n"#
"2vNkO##
.......... =hOj8;2
A/Fs?m{7U
PTR 0442 imp GDI.351 [i<$ZP
8a":[Q[
.......... e@2E0u4
;QvvU[eb
就表明,在本段的0442H偏移处,调用了GDI的第351号函数。如果在0442H处是0000:FFFF ,表示本段内仅此一处调用了GDI.351函数;否则,表明了本段内还有一处调用此函数,调用的位置就是0442H处所指向的内容,实际上重定位表只含有引用位置的链表的链头。那么,GDI. 351是一个什么函数呢?用EXEHDR对GDI.EXE作一分析,就可得出,在GDI的出口(Export)函数中,第351号是ExtTextOut。 laD.or
这样,我们在EXEHDR这一简单而非常有用的工具帮助下,已经在Windows的浩瀚海洋中畅游了一会,下面让我们继续深入下去。 &8:iB {n
%(dV|,|v
三、动态汉化Windows原理 n}ZBU5_
我们知道,传统的汉化Windows的方法,是要直接修改Windows的显示、输入、打印等模块代码,或用DDK直接开发"中文设备"驱动模块。这样不仅工作量大,而且,系统的完备性很难保证,性能上也有很多限制(早期的长青窗口就是如此),所以只有从内核上修改Windows核心代码才是最彻底的办法。 ;*j6d3E
从Windows的模块调用机制,我们可以看到,Windows实际上是由包括在KERNEL、GDI、US ER等几个模块中的众多函数支撑的。那么,修改其中涉及语言文字处理的函数,使之能适应中文需要,不就能达到汉化目的了吗? P&-D0T_
因而,我们可以得出这样的结论:在自己的模块中重新编写涉及文字显示、输入的多个函数,然后,将Windows中对这些函数的引用,改向到自己的这些模块中来。修改哪些函数才能完成汉化,这需要深入分析Windows的内部结构,但CHINESE.DLL已明确无误地告诉了我们,在其数据段的重定位表中列出的引用函数,正是CStar修改了的Windows函数!为了验证这一思路, 我们利用RichWin作一核实。 @]y{M;
用EXEHDR分析GDI.EXE,得出ExtTextOut函数在GDI的第一代码段6139H偏移处(不同版本的Windows其所在代码段和偏移可能不一样)。然后,用HelpWalk(也是Microsoft Visual C+ +开发工具中的一个)检查GDI的Code1段,6139H处前5个字节是 B8 FF 05 45 55,经过运行Ri chWin 4.3 for Internet后,再查看同样的地方,已改为 EA 08 08 8F 3D。其实反汇编就知道,这5个字节就是 Jmp 3D8F:0808,而句柄为0x3D8F的模块,用HelpWalk能观察正是RichWin 的WSENGINE.DLL的第一代码段( 模块名为TEXTMAN)。而偏移0808H处 B8 B7 3D 45 55 8B E C 1E,正是一个函数起始的地方,这实际上就是RichWin所重改写的ExtTextOut函数。退出Ri chWin后,再用HelpWalk观察GDI的Code1代码段,一切又恢复正常!这与前面的分析结论完全吻合!那么,下一个关键点就是如何动态修改Windows的函数代码,也就是汉化Windows的核心——"陷阱"技术。 8IT_mjj
D
7;~x]*
四、"陷阱"技术 #Tg|aW$(*
讨论"陷阱"技术,还要回到前面的两个发现。发现之二,已能解释为修改的Windows函数,而发现之一却仍是一个迷。 V!kQuQJ>
数据段存放的是变量及常量等内容,如果这里面包含有重定位信息,那么,必定要在变量说明中将函数指针赋给一个FARPROC类型的变量,于是,在变量说明中写下: 6>LQGO
FARPROC FarProcFunc=ExtTextOut; Chb4VoE
果然,在自己程序的数据段中也有了重定位信息。这样,当程序调入内存时,变量FarPro cFunc已是函数ExtTextOut的地址了。 "x=@,*Bk
要直接修改代码段的内容,还遇到一个难题,就是代码段是不可改写的。这时,需要用到一个未公开的Windows函数AllocCStoDSAlias,取得与代码段有相同基址的可写数据段别名, 其函数声明为: npG+#z
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); ]'1N_m]?
参数是代码段的句柄,返回值是可写数据段别名句柄。 n{qw ]/
Windows中函数地址是32位,高字节是其模块的内存句柄,低字节是函数在模块内的偏移。将得到的可写数据段别名句柄锁定,再将函数偏移处的5个字节保留下来,然后将其改为转向替代函数(用 EA Jmp): 9>.<+b(>!'
*(lpStr+wOffset) =0xEA; ,,C~j`F
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。
ycAi(K
//源程序 relocate.c @6I[{{>X
Jq?^8y
#include <WINDOWS.H> 2'O!~8U
#include <dos.h> yaYIgG
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECTFAR*lpRect,LPCSTR lpStr, UINT nInt2, int FAR* lpInt);
J7
*G/F
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); oRvm*"8B
typedef struct tagFUNC x#}j3"
PP
{ um_M}t{
FARPROC lpFarProcReplace; //替代函数地址 !w;A=
FARPROC lpFarProcWindows; //Windows函数地址 nkCRe
BYTE bOld; //保存原函数第一字节 ./BP+\)lO
LONG lOld; //保存原函数接后的四字节长值 *~t$k56
}FUNC; KoQ_:`
FUNC Func={MyExtTextOut,ExtTextOut}; *`pec3"
//Windows主函数 O+8ApicjTc
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) 8^f[-^%
{ $.3CiM}~
HANDLE hMemCode; //代码段句柄 v^lm8/}NO
WORD hMemData; //相同基址的可写数据段别名 6!Tf'#TV~!
WORD wOffset; //函数偏移 CSk
LPSTR lpStr; > {LJ#Dc6
LPLONG lpLong; 1!v >I"]
char lpNotice[96]; ]5)&36
hMemCode=HIWORD((LONG) Func.lpFarProcWindows ); "|l
oSf@
wOffset=LOWORD((LONG) Func.lpFarProcWindows ); ?GMeA}j
wsprintf(lpNotice,"函数所在模块句柄 0x%4xH,偏移 0x%4xH",hMemCode,wOffset); zx]M/=7,V#
MessageBox(NULL,lpNotice,"提示",MB_OK); %.atWX`b
//取与代码段有相同基址的可写数据段别名 N:gstp
hMemData=AllocCStoDSAlias(hMemCode); ]TTJr C:
lpStr=GlobalLock(hMemData); U0|j^.)
lpLong=(lpStr+wOffset+1 ); m?R+Z6c[
//保存原函数要替换的头几个字节 sVm'9k
Func.bOld=*(lpStr+wOffset); u):Rw
Func.lOld=*lpLong; 1rm$@L
*(lpStr+wOffset)=0xEA; loqS?b C]
*lpLong=Func.lpFarProcReplace; -WHwz m
GlobalUnlock(hMemData); \<MTY:
MessageBox(NULL,"改为自己的函数","提示",MB_OK); BS<>gA
R;/
//将保留的内容改回来 E<m"en&v
hMemData=AllocCStoDSAlias(hMemCode); Dk{nOvZu<
lpStr=GlobalLock(hMemData); "6Hjji@A
lpLong=(lpStr+wOffset+1 ); Vo9)KxR
*(lpStr+wOffset)=Func.bOld; abk:_
*lpLong=Func.lOld; dE9aE# o
GlobalUnlock(hMemData); {*=5qV}
MessageBox(NULL,"改回原Windows函数","提示",MB_OK); C7*Yg$`{
return 1; B=RKi\K6a
} J<P/w%i2
@1qUC"Mg
//自己的替代函数 s)7`r6w
)dN,b(w9
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECT FAR* 8KdcLN@
lpRect, LPCSTR lpStr, UINT nInt2, int FAR* lpInt) k^%TJ.y@
{ ;;"c+
BYTE NameDot[96]= DrCfC[A~]
{ nrD=[kc!w
0x09, 0x00, 0xfd, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, $,@ rKRY
0x79, 0x40, 0x41, 0x04, 0x47, 0xfe, 0x41, 0x40, 0x79, 0x40, CPCB!8-5
0x09, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x4e, 0x51, 0x84, ^&w'`-ra
0x21, 0x00, 0x02, 0x00, 0x01, 0x04, 0xff, 0xfe, 0x00, 0x00, TXk"[>,:H
0x1f, 0xf0, 0x10, 0x10, 0x10, 0x10, 0x1f, 0xf0, 0x00, 0x00, UNH}*]u4`
0x7f, 0xfc, 0x40, 0x04, 0x4f, 0xe4, 0x48, 0x24, 0x48, 0x24, Y8CYkJTAD-
0x4f, 0xe4, 0x40, 0x0c, 0x10, 0x80, 0x10, 0xfc, 0x10, 0x88, z )}wo3
0x11, 0x50, 0x56, 0x20, 0x54, 0xd8, 0x57, 0x06, 0x54, 0x20, 8'_
]gfF
0x55, 0xfc, 0x54, 0x20, 0x55, 0xfc, 0x5c, 0x20, 0x67, 0xfe, VTX'f2\
0x00, 0x20, 0x00, 0x20, 0x00, 0x20 PQ!?gj
}; B xN#Nk~
ABYW1K=
HBITMAP hBitmap,hOldBitmap; &WWO13\qd
HDC hMemDC;
6V_5BpXt
BYTE far *lpDot; Pc:'>,3!V3
int i; ~(doy@0M
for ( i=0;i<3;i++ ) FUv)<rK
{ $YO]IK$
lpDot=(LPSTR)NameDot+i*32; N|#x9mE
hMemDC=CreateCompatibleDC(hDC); V9 t:JY
hBitmap=CreateBitmap(16,16,1,1,lpDot); ojs/yjvx
SetBitmapBits(hBitmap,32L,lpDot); ~|d?o5W
hOldBitmap=SelectObject(hMemDC,hBitmap); %KVRiX
BitBlt(hDC,x+i*16,y,16,16,hMemDC,0,0,SRCCOPY); 5>k~yaju/
DeleteDC(hMemDC); <HX-qNA?
DeleteObject(hBitmap); P6Z,ci17
} $/(/v?3][e
return TRUE; "kuBjj2
} *q9$SDm
kd2'-9
//模块定义文件 relocate.def [zt&8g
D
`3yv
R
NAME RELOCATE &(U=O?r7
EXETYPE WINDOWS Ita!07
CODE PRELOAD MOVEABLE DISCARDABLE HQ#L
|LN
DATA PRELOAD MOVEABLE MULTIPLE 7^}Z%c
HEAPSIZE 1024 ea;c\84_N
EXPORTS -`<N,
X/D9%[{&
五、结束语 Dg4^
C
本文从原理上分析了称为"陷阱"技术的动态汉化Windows方法,介绍了将任一Windows函数调用改向到自己指定函数处的通用方法,这种方法可以拓展到其它应用中,如多语种显示、不同内码制式的切换显示等。