汉诺塔非递归算法.我只是将盘子的数量等于2,3的情况代到网上别人给的算法中验证了一下,没有错。并没有证明算法的正确性。算法是否有效,有待大家证明。 QGtKu:c.81
~.;S>o[
include <iostream> tL?nO#Qx
#include <stdlib.h> #x"dWi(
#]ZOi`;
#ifdef _WIN32 %&L]k>n^
using namespace std; VU1;ZJE
#endif g?qh
wl1JKiodg
static void hanoi(int height) bgW=.s
{ K)|#FRPM u
int fromPole, toPole, Disk; 6{rH|Z
int *BitStr = new int[height], //用来计算移动的盘的号码 fqaysy
*Hold = new int[height]; //用来存贮当前的盘的位置。hold[0]为第一个盘所在的柱号 5>J{JW|
char Place[] = {'A', 'C', 'B'}; s6k,'`.
int i, j, temp; 6~Y-bn"%D5
%,u_`P
for (i=0; i < height; i++) rz c}2I
{ WlHw\\ur
BitStr = 0; *I0{1cST
Hold = 1; p)d0ZAs
} qRMH[F$`
temp = 3 - (height % 2); //第一个盘的柱号 t'@1FA!)
int TotalMoves = (1 << height) - 1; \Uun2.K
for (i=1; i <= TotalMoves; i++) \`N%77A
{ Gld|w=qr
for (j=0 ; BitStr[j] != 0; j++) //计算要移动的盘 7xAzd#
c?=
{ m^dKww
BitStr[j] = 0; -ec~~95
} bP%0T++vo
BitStr[j] = 1; B;A^5~b
Disk = j+1; qGtXReK
if (Disk == 1) k^3|A3A
{ `3!ERQU
fromPole = Hold[0]; 38IVSK_
toPole = 6 - fromPole - temp; //1+2+3等于6,所以6减去其它两个,剩下那个就是要移去的柱子 ;H5H7ezV
temp = fromPole; //保存上一次从哪个柱子移动过来的 3%Jg' Tr+
} J]8nbl
else S$q:hXZ#e
{ FL5u68
fromPole = Hold[Disk-1]; -DwqoWZ
toPole = 6 - Hold[0] - Hold[Disk-1]; vpOn0([hS
} 5_U3Fs
cout << "Move disk " << Disk << " from " << Place[fromPole-1] vmI]N
<< " to " << Place[toPole-1] << endl; _5I" %E;S
Hold[Disk-1] = toPole; ,^MA,"8
} gd>Op
} e-;$Iv
ag*RQ
8fzmCRFH
>Zk$q~'+
>#z*gCO5,
int main(int argc, char *argv[]) 0Y#S2ty
{ ?pdvFM
cout << "Towers of Hanoi: " << endl l^x5m]Kt
<< "moving a tower of n disks from pole A to pole B by using pole C" << endl; DXj_\ R(}
cout << "Input the height of the original tower: "; S_cba(0-|\
int height; +:4J~Cuf
cin >> height; 5?),6o);
hanoi(height); yW.s?3X
@; ayl
system("PAUSE"); 3 }Z[d
return EXIT_SUCCESS; W/U&w.$
} 7Wg0-{yK4
kd9rvy0oK
JF]HkH_u
YC\~PVG
问题描述:有三个柱子A, B, C. A柱子上叠放有n个盘子,每个盘子都比它下面的盘子要小一点,可以从上 ]qCAog
+D|y))fE
到下用1, 2, ..., n编号。要求借助柱子C,把柱子A上的所有的盘子移动到柱子B上。移动条件为:1、一 y?W8FL
d_BO&k